

... for a brighter future

Status of Thermal Fluid Code and Coupling with Neutronics Code in ANL

Dave Pointer and Justin Thomas Nuclear Engineering Division Argonne National Laboratory

Progress Review Meeting on Advanced Multi-Physics Simulation Capability for VHTRs

Hyatt Regency Hotel, Atlanta

June 17 – 18, 2009

UChicago ► Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Overview

Background

- VHTR M&S Challenges
- SHARP for AFCI NEAMS
- Current Design Practices

VHTR Advanced M&S Project

Objectives and Approach

Key Achievements

- Thermo-fluid
- Coupling Calculations
- Future Work

Challenges for VHTR Modeling and Simulation

Neutronics

- Double heterogeneity effects due to TRISO fuel particles and compacts
- Large leakage fraction due to large migration area and annular core shape
- Strong core/reflector coupling and thermal flux peaking
- Increased importance of low lying Pu resonances and T-dependent graphite scattering kernel for deepburn configurations

Thermo-Fluid Dynamics

- Convective heat removal by coolant flowing through fuel blocks (for various flow conditions)
- Coolant bypass of coolant channels (gap flow)
- Multidimensional conduction within blocks
- Radiative redistribution of thermal load between blocks
- Large number of coolant channels much longer than hydraulic diameter

Current Design Practices Network Flow Solvers for Parametric Design Analysis

- Nodal network flow simulators are used for parametric design analysis
 - Specialized codes like GAS-NET
 - Commercial codes like Flownex
- Use same correlation database as safety codes
- Allow for direct consideration of bypass flows
 - Axial core bypass flows
 - Radial core bypass flows
 - Control rod channel leakage
 - Leakage past gap seal of core support
 - Openings in blocks at periphery
- User must define gap/leakage path dimensions and characteristics

Current Design Practices Lumped Parameter Models for Safety Analysis

- Entire VHTR core is represented as 2 - 4 characteristic channels
 - Heat and mass are conserved for the entire mass and volume of the core regions represented by each channels
 - All heat transfer is modeled as "effective" conduction
- Inner and outer reflector are each represented as a single channel
- Fuel temperatures are typically determined from 2D or 1D single channel analysis with lumped parameter representations
- Simulations based on correlations

Approaches Thermofluids Analysis and Coupling

- Leverage the prior experiences of NNR high-fidelity simulation tool for LWR applications
- Incorporate the commercially-developed STAR-CD/STAR-CCM+ code suite directly into the SHARP framework to augment the capabilities provided by Nek5000 and make additional modeling improvements to satisfy the target performance
- Improve efficiency of model development
 - Enable physics-specific mesh type and resolution selection
 - Mapping of structured and unstructured meshes
 - Remove additional constraints on coupled model
 - Eliminate additional steps required for coupled model development
- Improve efficiency of coupled simulation
 - Enable direct communications between physics modules
 - Parallelization of data streams and data structures

NNR Model Generation and Coupling Strategy Require that DeCART and STAR-CD meshes align

Setup Step 1 **DeCART DeCART** Mesh Setup Step 2 STAR-CD STAR-CD Mesh **Aligned Meshes** Simulation **DeCART** STAR-CD **NNR** → DeCART STAR-CD Mesh framework Mesh Coupled Results

Initial Model Generation and Coupling Strategy Require that DeCART and STAR-CD meshes align

Setup Step 1

Simulation

Initial Coupled Demonstration

- Use 3 x 3 LWR demonstration problem from NNR activities
- Demonstrate coupling of new versions of DeCART and STAR-CD using initial coupling strategy
 - Require that CFD meshes be aligned with DeCART meshes
 - Results in > 6 million computational cells in CFD domain

Coupled Simulation Results

- STAR-CD CFD calculation
 - 36 cores (9 quad-core nodes)
- DeCART neutronics calculation
 - 22 cores (1 core per plane)
 - Complete calculation required
 2.25 hours (wall clock time)

Initial Model Generation and Coupling Strategy Allow unaligned (and unstructured, non-conformal) meshing

Non-conformal mesh mapping

- Relax the constraint to have the DeCART and STAR-CD mesh align
- Perform inexact geometric mesh mapping
 - For the 3 x 3 LWR problem, number of mesh reduced by a factor of 4, further reduction is possible.

DeCART Spatial Mesh

Conformal STAR-CD Mesh

Non-Conformal STAR-CD Mesh

Interim Strategy Less reliance on files setup models

Target Coupling Strategy

Single Channel Simulations for Selection of Modeling Parameters

Baseline Steady State Simulations

- Segregated flow solver
- SIMPLE algorithm with Rhie-Chow interpolation for pressure-velocity coupling and algebraic multi-grid preconditioning
- 2nd-order central differencing scheme
- Realizable k-epsilon turbulence model with a two-layer all y+ wall treatment (Norris & Reynolds)
- Requires only 30 hours of total CPU time

Mesh Sensitivity

Mesh	Label	Number of Coolant Cells	Number of Fuel Cells	Number of Graphite Cells
A	Very Coarse	332,602	866,088	1,215,481
В	Coarse	472,776	969,726	1,636,353
С	Nominal	718,243	1,178,336	2,378,531
D	Fine	1,218,783	1,676,533	3,876,790

Turbulence model selection

- Consider 4 unique turbulence models
 - Two-layer realizable k-epsilon
 - Two-layer standard k-epsilon
 - Stanford V²F
 - Algebraic Reynolds Stress Model

Radial gap effects

- Introduced artificially large gap between each block in the column considered in the single channel model
 - 3mm gap spacing (0.7mm maximum expected)

Full Block Models

- Using meshing strategies developed for single channel, a CFD mesh describing a column of full blocks has been developed
- Uses 8.8 million computational cells
 - Polyhedral elements allow conformal meshing of solid and fluid components
 - Improved numerical performance for conjugate heat transfer
 - Includes upper and lower plenum volumes
 - Flow splits between channels are simulated

- Assume uniform power distribution
 - Burnable poison channels treated as fuel
- Simulations require 17.5 total CPU hours on 20 cores

DeCART/STAR-CD Mesh Mapping

- Initial mapping utility uses a simple approach in which DeCART zones are associated with all STAR-CD cells whose centroid falls within that zones.
- Global conservation is enforced within any single material across the entire domain

Detailed view of mapping at top of fuel block

Coupled Full Block Model Results

- Power distribution from DeCART, reflects temperature feedback from CFD
- Temperature feedback exaggerated, due to greatly increased F/M ratio for single block
- After CFD initialization, coupled simulation required 4.2 hours on 32 cores for 9 data exchanges

Key Achievements and Findings in Thermofluids Modeling and Coupling

- Developed staged integration strategy for incorporation of STAR-CD/STAR-CCM+ into SHARP framework
 - Build upon NNR experience
 - Focus on improvement of simulation and model development efficiency
- Demonstrated methodology for generation of computational meshes describing prismatic VHTR geometry from CAD data for both DeCART and STAR-CD.
- Completed scoping studies of mesh resolution effects and turbulence model performance
 - Identified baseline mesh resolution paramters
 - Selected realizable k-epsilon model with two-layer (Norris & Reynolds)
 wall treatement
- Developed hexagonal geometry mesh mapping tools for exchange of data between DeCART and STAR-CD
- Initiated simulation of first coupled calculation.
 - Consider one column of fuel blocks

Future Work

- Assess the limitations of the existing 2D-1D iteration scheme of DeCART
 - Devise a more robust iterative scheme or an alternative framework for the 3D transport calculation
- Develop enhanced parallel computation schemes for 2D MOC and 3D calculations of DeCART
- Develop an optimized, VHTR-specific scheme for iteration between neutronics and thermo-fluid simulations based on observations of convergence behavior
- Extend the DeCART library to include fission products cross sections and additional data required for depletion and kinetics analyses
- Evaluate importance of radiation heat transfer between adjacent prismatic fuel blocks relative to multi-dimensional conduction in the graphite block and convective heat transfer in the bypass flow channel as predicted by CFD mode
- Develop software (e.g., java wrapper and interface) for STAR-CD to facilitate its coupling with other physics module with minimal reliance upon native features in CFD module (in particular, mesh generation)
- Enable CFD simulations of density-driven natural convection multiple block models to capture mixed and natural convection heat transfer in low flow regions of the core and improve prediction of pressure losses
- Perform additional verification and validation analyses using HTTR and possibly Fort St. Vrain benchmark data

